
C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

INFORMS Journal on Computing
Articles in Advance, pp. 1–10
issn 1091-9856 �eissn 1526-5528

informs ®

doi 10.1287/ijoc.1080.0293
©2009 INFORMS

Solving Hard Mixed-Integer Programming Problems
with Xpress-MP: A MIPLIB 2003 Case Study

Richard Laundy, Michael Perregaard
Fair Isaac, Leamington Spa, Warwicks CV32 5YN, United Kingdom
{richardlaundy@fairisaac.com, michaelperregaard@fairisaac.com}

Gabriel Tavares, Horia Tipi, Alkis Vazacopoulos
Fair Isaac, Englewood Cliffs, New Jersey 07632

{gabrieltavares@fairisaac.com, horiatipi@fairisaac.com, alkisvazacopoulos@fairisaac.com}

Despite the fact that no polynomial-time algorithm is known for solving mixed-integer programming (MIP)
problems, there has been remarkable success in recent years in solving a wide range of difficult MIPs. In this

paper, we take a look at some of the hardest problems in the MIPLIB 2003 test set and show how Xpress-MP
can be used to solve some of the problems that were previously thought to be intractable.

Key words : mixed-integer programming (MIP); MIPLIB 2003; software for MIP
History : Accepted by John Chinneck, former Area Editor for Modeling: Methods and Analysis; received
February 2007; revised October 2007; accepted May 2008. Published online in Articles in Advance.

1. Introduction
Over the past decade there has been a huge increase
in the performance of state-of-the-art mixed-integer
programming (MIP) codes. This improvement in per-
formance, combined with the increased performance
of computers, has dramatically increased the size
and complexity of problems that can be solved.
As a result, MIP is now commonly used in deci-
sion-oriented applications across a wide number of
industries.
Xpress-MP is a suite of mathematical modeling

and optimization tools used to solve linear, inte-
ger, quadratic, nonlinear, and stochastic programming
problems (Ashford 2007; Dash Optimization 2005,
2008; Guéret et al. 2002). The Xpress-MP suite is avail-
able on most computer platforms and in different
capacities for solving problems of various sizes.
Xpress-MP was first released in 1983 as a tool for

modeling and solving linear programming (LP) mod-
els on PCs, and it was extended in 1986 to solve MIP
models by creating a linear programming branch-and-
bound code (see Wolsey 1998). Since then, the code
has become increasingly more sophisticated with the
addition of new search strategies and solution tech-
niques. Some changes fundamental to the improve-
ment in MIP performance are
• robust high-performance implementations of the

underlying LP solver, which are up to 100 times faster
than implementations of 20 years ago on the same
hardware;
• automatically generated cutting planes applied

both at the root and in the branch-and-bound tree;

• strong branching; and
• heuristics.
Some of the innovations in MIP solution technology

that have been implemented in Xpress have resulted
in orders-of-magnitude improvements in solution
times, so that problems that were previously consid-
ered to be insoluble are now solved routinely within
a short period of time. Some of these novel ideas
are only applicable to certain problem classes, but
their presence in a large toolbox of techniques allows
Xpress to solve a wide range of problems derived
from a large number of practical problems.
As a result of the vast improvements of the MIP

technology within Xpress-MP, we decided that it was
time to revisit some of the harder problems in MIPLIB
2003 to see what can be achieved. We show how
the toolbox of techniques within Xpress can be har-
nessed to finally solve some of the problems that have
seemed to be intractable in the past.

2. MIPLIB 2003
MIPLIB 2003 is a standard and widely used bench-
mark to compare the performance of various MIP
algorithms.
This library is publicly available at http://miplib.

zib.de (Achterberg et al. 2006b) and consists of
60 (minimization) problems, each one having spe-
cial characteristics, and described in more detail in
Achterberg et al. (2006a).
The problems in the MIPLIB test set come from

a wide range of applications and range from very

1
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easy problems to problems for which even solving
the LP relaxation is a challenging task. According
to the MIPLIB website (visited during October 2006),
the MIPLIB 2003 instances were classified into three
groups of difficulty as follows:
• 28 problems are solved within one hour with a

commercial solver;
• 18 problems have their optimal solution known,

but they do not satisfy the previous conditions; and
• 14 problems are unsolved.
When we started our investigation, there was still

no known solution to one of problems, stp3d, and 11
of the 14 unsolved problems were still unsolved. Solu-
tions to three of the problems had just been found
by Ferris (2006), who reported the solution of prob-
lems a1c1s1 and timtab2 using GAMS Grid computing
in Condor and showed that the traveling salesman
problem swath could be solved quickly by applying
subtour elimination cuts.
In about a one-year period of time prior to this

report, the number of open problems from MIPLIB
decreased from 17 to 8 unsolved cases:
December 2005: A solution of arki001 was proven

to be optimal by Balas and Saxena (2005) using the
split closure of the problem.
June 2006: According to the MIPLIB website, prob-

lems glass4 and roll3000 could be solved by the state-
of-the-art MIP solvers.
September 2006: The optimal values of a1c1s1,

timtab2, and swath were found by GAMS Grid com-
puting in Condor (Ferris 2006).
November 2006: The optimal values of atlanta-ip,

msc98-ip, and rd-rplusc-21 were found using Xpress
2006B by Vazacopoulos et al. (2006).
In this paper, we address several optimization

strategies using Xpress-MP1 that lead to finding the
optimal solutions presented by Vazacopoulos et al.
(2006) and strategies for finding the optimal solu-
tion to the problems protfold and sp97ar, previously
unsolved (see §5). We also present improved solve
times (to optimality) for five of the problems that have
been solved in the past year (see §4), and present
improved solutions for all the remaining six open
problems (see §7).
Before considering the harder MIPLIB problems, we

first look at some of the easier ones. The Xpress-MP
performance on the group of MIPLIB problems that
can be solved within one hour is investigated in §3.

3. Problems That Can Be Solved
Within One Hour

Table 1 includes the 29 instances from MIPLIB 2003
for which Xpress 2006B can find the optimal solution

1 Version 17.10.04 of release 2006B has been used in these compu-
tational experiments.

within one hour using default settings. All tests were
run on a dual Xeon 3.0 GHz, 64 bit, 4 GB of RAM,
running Windows XP with Xpress being run in serial
mode.
By default, Xpress will stop when the best-found

MIP solution is within 0.01% of optimality. For our
experiments, we carried on the tree search until opti-
mality had been proven.
The most interesting points from the results of

Table 1 are as follows:
• six problems can be solved at the root node;
• nine problems are solved by Xpress 2006B in less

than one second;
• the Xpress 2006B average computing time on the

group of easier problems is 164.6 seconds. If one disre-
gards those problems solved within one second, then
the average solve time of the remaining 20 problems
is 265 seconds; and
• the three more challenging instances on the

group of easier problems are mas74, mzzv11, and pk1,
respectively, having Xpress 2006B solve times of 3,332,
359, and 228 seconds.

3.1. Historical Overview of Xpress Performance
We now look at how the Xpress performance has
improved over the past few years and describe some
of the reasons for these improvements.
Figure 1 shows the number of MIPLIB 2003 prob-

lems that could be solved by the last four annual
releases of Xpress-MP within 30 minutes. Using the
same computer (a dual Xeon 3.0 GHz, 64 bit, run-
ning XP), Xpress 2003G could only solve 22 instances,
whereas Xpress 2006B now solves six more instances
within a 30-minute time window.
Table 2 provides the speedup factor of the later

Xpress releases (2004D, 2005B, and 2006B) with respect
to Xpress 2003G for the easier group of MIPLIB 2003
problems. Instances (fixnet6, gesa2, gesa2-o, modglob,
modglob, p2756, and pp08a) that could be solved by
all the four solvers within one second have been
disregarded.
The increase in performance of Xpress has not been

down to a single enhancement but is due to numer-
ous algorithmic improvements that combine to form
a toolbox of techniques. If any one of these techniques
is applicable to a particular model, then it can dra-
matically reduce the solve time of that model. Some
of the algorithmic improvements are described below.

3.1.1. Presolve. Most of the MIPLIB problems
benefit from presolving. Presolving techniques have
been around for a while (see Brearley et al. 1975) and
consist of techniques that are not too expensive in
terms of computational time, but reduce the problem
size and strengthen the MIP formulation. The bene-
fits of reduced problem size are gained when solving
each node of the tree search and usually give linear
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Table 1 Branch-and-Bound (B&B) Nodes and Solution Times of the MIPLIB 2003 Instances, Which Are
Solved to Optimality by Xpress-MP 2006B with Default Settings in One Hour

Xpress B&B nodes to Xpress time† to
Optimal

Problem Solution Optimality Solution (s) Optimality (s) value

10teams 26 51 2 2 924
aflow30a 3�416 7�023 23 43 1�158
air04 166 185 36 36 56�137
air05 209 261 31 32 26�374
cap6000 1�389 1�937 7 9 −2�451�377
disctom 1 1 4 4 −5�000
fiber 56 69 <1 <1 405�935�18
fixnet6 9 11 <1 <1 3�983
gesa2 1 1 <1 <1 25�779�856�4
gesa2-o 1 1 <1 <1 25�779�856�4
harp2 30�942 67�239 90 149 −73�899�798�84
manna81 1 1 <1 <1 −13�164
mas74 46�709 2�380�685 35 3�332 11�801�1857
mas76 1 219�797 <1 159 40�005�0541
misc07 2�220 21�359 8 65 2�810
mod011 1�001 1�277 64 72 −54�558�535
modglob 1 11 <1 <1 20�740�508�1
mzzv11 1�047 1�145 345 359 −21�718
mzzv42z 121 125 48 48 −20�540
nw04 28 161 15 17 16�862
opt1217 1 1 <1 <1 −16
p2756 8 15 <1 <1 3�124
pk1 157�892 232�391 149 228 11
pp08a 124 213 <1 1 7�350
pp08aCUTS 88 181 <1 1 7�350
qiu 6�245 10�383 120 147 −132�873137
rout 4�165 10�323 34 67 1�077�56
set1ch 1 1 <1 <1 54�537�75
vpm2 19 1�341 <1 2 13�75

†Obtained on a dual Xeon 3.0 GHz, 64 bit, 4 GB of RAM, running Windows XP.
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Number of MIPLIB problems solved optimally by
Xpress within 30 minutes

Figure 1 Number of MIPLIB 2003 Problems Solved Optimally by
Xpress Within 30 Minutes Using Default Settings (on a
Pentium 4, 3.6 GHz, Running Windows XP) Across Different
Releases in the Past Four Years

speedups. However, strengthening the formulation
using techniques such as coefficient tightening (see
Savelsbergh 1994) can lead to reductions in the tree
size and so can result in much larger speedups. The
number of presolving techniques that are now avail-
able within Xpress has increased as we have analysed
model formulations and found ways to strengthen
them. Some of the formulations that were previously
considered to be “bad” formulations can no longer be
considered as such because presolve will essentially
reformulate the problem.

3.1.2. Cutting Planes. The generation of cutting
planes can have a huge impact on solution times. For
some problems, branching has little effect on the LP
solution and so the tree size grows exponentially. This
is a particular problem when the LPs are degener-
ate and large numbers of nodes with the same objec-
tive value can be created. The 10teams, manna81, and
opt1217 models from MIPLIB 2003 are typical exam-
ples. If good cuts are generated for these instances,
the integrality gap can be closed, and it is then a mat-
ter of finding the optimal MIP solution from among
the remaining degenerate LP solutions.
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Table 2 Comparative Performance of the Xpress Software Releases
Between 2003 and 2006 in the MIPLIB 2003 Easier Instances

Optimality speedup factor
to 2003G by

Solve time†

of 2003G 2004D 2005B 2006B
Problem (14.27) (s) (15.30.12) (16.10.09) (17.10.04)

10teams 451 30�1× 32�2× 225�5×
aflow30a 141 0�8× 0�8× 3�3×
air04 75 3�1× 3�8× 2�1×
air05 54 1�5× 1�2× 1�7×
cap6000 46 2�0× 2�2× 4�6×
disctom ≥20�000 ≥6,670× ≥6,670× ≥5�000×
fiber 3 3�0× 3�0× 3�0×
harp2 437 1�4× 1�5× 2�7×
manna81 ≥6�000 ≥1,500× ≥6,000× ≥6�000×
mas74 3�781 1�2× 1�3× 1�1×
mas76 112 1�1× 0�9× 0�7×
misc07 98 1�1× 0�9× 1�3×
mod011 129 1�4× 1�4× 1�6×
mzzv11 97�889 <1�5× 119�7× 113�2×
mzzv42z ≥20�000 n/a ≥415× ≥385×
nw04 52 4�7× 4�0× 2�7×
opt1217 ≥35�000 n/a n/a ≥35�000×
pk1 139 0�6× 0�7× 0�6×
pp08aCUTS 2 2�0× 2�0× 2�0×
qiu 196 1�3× 1�3× 1�2×
rout 86 0�3× 0�9× 1�2×
set1ch 2�965 0�8× 2,965× 2,965×
vpm2 6 2�0× 2�0× 3�0×
Note. The fastest solution time is shown in bold.

†Obtained on a dual Xeon 3.0 GHz, 64 bit, 4 GB of RAM, running Win-
dows XP.

The cuts generated within Xpress can be catego-
rized as follows:
• Gomory/lift-and-project cuts;
• clique cuts;
• lifted cover cuts;
• mixed-integer rounding (MIR) cuts;
• implication cuts; and
• flow path cuts.
Gomory cuts (Gomory 1960) are general-purpose

cuts that are generated from an optimal simplex
tableau using the integrality of the fractional inte-
ger or binary variables. Lift-and-project cuts (Balas
et al. 1993, Balas and Perregaard 2002, Cornuéjols
2007, Perregaard 2003) are disjunctive cuts that can
be shown to be equivalent to Gomory cuts generated
from a simplex tableau that is not necessarily feasible
or optimal. These cuts can be generated for most of
the MIPLIB problems and are usually very good at
helping to close the integrality gap.
The remaining cuts work on various structures in

the matrix or rely on finding certain properties. Clique
cuts (see Atamturk et al. 1998) are cuts that restrict the
sum of a set of binary variables to be less than one.
Violated clique cuts can be generated from other
cliques in the model. They are typically generated

on airline crew-scheduling models such as the air04,
air05, and nw04 models in MIPLIB 2003.
Lifted cover cuts (Crowder et al. 1983, Van Roy

and Wolsey 1987) are generated from knapsack con-
straints within the matrix from which a violated cover
cut can be generated. The cover cut is then lifted
to include other variables in the knapsack but not
already in the cover. Xpress generates various cuts
that are extensions to lifted cover cuts such as lifted
generalized upper-bound (GUB) cover cuts, which are
lifted cover cuts generated from knapsack constraints
where the variables in the knapsack are members of
clique inequalities (or GUBs). The cap6000 model is a
typical instance for which lifted GUB cover cuts can
be generated.
MIR cuts (see Wolsey 1998) are essentially Gomory

cuts generated from constraints or simple aggrega-
tions of constraints of the original problem. Like lifted
cover cuts, MIR cuts can only be generated from
constraints whose coefficients are nonuniform. Many
of the MIPLIB 2003 problems contain knapsack-type
constraints or constraints that can be aggregated to
produce knapsack constraints.
Implication cuts (Hoffman and Padberg 1991) can

be generated when a binary variable implies a bound
on another variable. As an example, variable upper
bounds (VUBs) can be generated as cuts when the
original model contains aggregated VUB constraints.
These cuts are very effective due to their sparsity.
Flow path cuts (Padberg et al. 1985) can be gener-

ated if a model has has a network structure for which
nonzero flows incur a fixed charge. Flow path cuts
can be very effective; for example, the reason why the
set1ch model now solves in less than a second is due
to the addition of flow path cuts.
Cordier et al. (1999) give a more detailed descrip-

tion of some of the cuts within Xpress.

3.1.3. Branching Variable Selection. Branching
variable selection can make a large difference to the
size of a tree search. It is usually best to select branch-
ing variables that have a big impact on the problem
in terms of objective function change or structural
change. The reduction in tree size from improving the
branching variables selection can be sufficiently large
to make it cost effective to spend time finding bet-
ter branching variables. Strong branching (Applegate
et al. 1995) is a look-ahead method that performs dual
iterations on potential branching candidates to estab-
lish the effect of branching on the candidates. The
method can be expensive, so the amount of strong
branching is limited by default. The airline scheduling
problems air04, air05, and nw04 are typical instances
that benefit from strong branching.

3.1.4. Node Preprocessing. The size of the tree
search can be reduced by performing preprocessing
at the tree nodes before solving them. This consists
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of reduced cost fixing and bound tightening. In the
MIPLIB 2003 test set, the cap6000 model is one of the
models to benefit from node preprocessing. For this
model, the tree search can dive to a depth of 2,000 or
more before the node becomes fathomed, but most of
these branches can be avoided by node preprocessing.

3.1.5. Heuristics. For some problems, finding MIP
solutions in the tree search is difficult. For example,
the MIPLIB 2003 problem disctom is very degener-
ate, and branching on most of the fractional variables
results in subproblems that have a similar number
of fractional variables and exactly the same objective
function value. The tree search dives very deep before
detecting infeasibility, and so finding an integer solu-
tion is very difficult. However, it is fairly easy for
rounding heuristics to find the optimal solution, and
because there is no optimality gap at the top node,
the problem solves in a few seconds.

3.2. Strategies for Solving Harder Problems
For the easier MIPLIB problems, we have seen that
the techniques described above can be very effec-
tive. For the harder MIPLIB problems, preventing the
exponential growth of the tree search is much more of
a challenge. For example, running Xpress for a month
would not be of much use if the size of the tree search
keeps growing. As an example of the problem we
face, consider a tree search where it is necessary to
dive to a depth of 20 before nodes are fathomed. The
tree size will be of the order of a million nodes, and
if each node takes a second to solve, the problem will
eventually solve in just under two weeks. Now, con-
sider the case where the depth at which nodes are
fathomed has increased to 40. The tree size will now
be of the order of 1e+12 nodes, and even if the nodes
now take 1/100 second to solve, the solution time
will be around 350 years. Thus, the size of the tree
search can easily become unmanageable, and when
attempting to solve a problem it soon becomes appar-
ent whether it has any chance of being solved.
What options do we have when trying to solve

what appears to be an intractable problem? The first
thing to consider is the formulation. Poor formula-
tion can make a model much harder to solve, and it
is not always possible for presolve to automatically
improve the formulation. Formulating MIP models
can be somewhat of an art, and it is difficult to give
general advice on how to improve a formulation.
It is worth considering whether a model can be

decomposed into smaller problems that are easier to
solve. Sometimes a model contains a set of major deci-
sion variables that once fixed, the model splits into
several smaller models. Each of these smaller mod-
els may be fairly easy to solve, but the combined
model is much harder to solve. A strategy for solving
the overall model then is to enumerate all possible

combinations of the major decision variables and
solve the smaller subproblems.
If the formulation cannot be improved, then we

have to try various strategies for helping the tree
search. Finding a good integer solution early in the
tree search often helps prune the tree search and can
help to improve the branching. For extremely hard
problems, it is worth trying to find a very good solu-
tion in an initial run and then using the cutoff value
provided by the solution in another run that tries to
prove optimality. The settings for the two runs may
be completely different.
For the easier MIPLIB problems, we have seen the

importance of cutting strategies. Finding the right
cuts can dramatically reduce the tree size. However,
adding too many cuts can clog up the matrix and slow
down the node optimizations. The default cut strat-
egy can be too conservative for hard problems, so it
is worth trying to increase the number of cuts added
to the problem.
If it looks like the tree search has a chance of

completing, we can always resort to a brute-force
approach. We can try to reduce the size of the tree
search by increasing the strong branching effort or
alter the order in which the tree nodes are searched.
Running parallel Xpress can also help. The parallel
code performs separate tree search dives in different
threads in a way similar to the operation of the earlier
distributed parallel code described in Laundy (1999)
and gives linear speedups in many cases.

4. Problems That Have Been
Solved Recently

We now describe the strategies that we used to solve
to optimality five problems—a1c1s1, arki001, glass4,
roll3000, and swath—which were the last five con-
firmed problems solved prior to Vazacopoulos et al.
(2006). We remark that one of the MIPs (a1c1s1) is
solved for the first time using a single computer and
another (swath) is solved in its original form for the
first time using a single computer.
We describe the strategies in terms of the changes

we made to the Xpress parameters (see the Xpress-MP
Optimizer Reference Manual (Dash Optimization
2005) for a full description of the parameters).

4.1. a1c1s1
Problem a1c1s1 is a lot-sizing problem first looked at
by Van Vyve and Pochet (2001). For this problem, a
large part of the initial integrality gap can be reduced
by cutting, but the final 10% of the gap is very hard
to close either by adding extra cuts or by branching.
For this reason, alternative strategies were required.
The approach we took to solving this problem con-

sisted of decomposing it into a set of easier problems.
First, a partial branch and bound was run with full
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strong branching to create an initial set of 128 sub-
problems. For each subproblem that could not be
solved within half an hour, we split it again into
five subproblems and repeated this action until all
subproblems were solved.
The test computer used was an Intel Core Duo 2

running at 3 GHz with 4 GB of RAM. In the
experiment, we used parallel Xpress by setting
mipthreads= 2. The full time needed to prove optimal-
ity was about 32 hours.
The total number of subproblems created during

the application of our method was 230, of which
212 represent “final” subproblems, i.e., problems that
do not satisfy the splitting rule. The time needed
to create these subproblems was 3,800 seconds, and
the time needed to solve them was approximately
110,000 seconds, of which 72,000 seconds correspond
to the “final” subproblems. The total number of nodes
solved by our procedure was approximately 2.1 mil-
lion nodes.
To solve each subproblem, we used several Xpress

controls to get better optimization performance.
Namely, we used a node selection rule that selects
the node with the best LP bound from all outstanding
nodes (i.e., nodeselection= 2), and put more effort on
Xpress cutting andon strongbranching (cutstrategy= 3,
covercuts = 50, gomcuts= 10, cutfreq= 2, cutdepth = 20,
treegomcuts= 0, and sbeffort= 2). We also used a cutoff
value of 11,534.
Ferris (2006) has also recently reported solving

a1c1s1. For this achievement, he used the GAMS
Grid computing in the Condor system, spending
3,452 hours of CPU time. Because our CPU time was
about 58 hours (considering the two CPUs used), our
approach using Xpress 2006B needs about 60 times
less CPU consumption than the approach of Ferris
(2006).
Problem a1c1s1 has an optimal objective value of

11,503.444125.

4.2. arki001
The problem arki001 is a relaxation of a nonlinear
problem arising in the metallurgy industry. Although
it is possible to find good solutions to this problem,
it was not proven that the best solution found to
this problem was indeed optimal until 2006 when
Balas and Saxena (2005, 2008) solved the problem
with the use of cuts from the split closure. The solve
time reported in Balas and Saxena (2005) was about
65 hours, of which 54 hours were spent generating
rank-1 split cuts and 11 hours were spent solving the
strengthened MIP.
Achterberg et al. (2006b) solved this instance in

under nine hours and Achterberg (2006), using SCIP
with aggressive strong branching and conflict analysis
resolution, solved the problem in 5.2 hours, comput-
ing about 1.8 million nodes.

Vazacopoulos et al. (2006) report solving arki001
with Xpress 2006A in four hours. Xpress 2006B
solves the problem in 3.9 hours on a dual Xeon
3.0 GHz, computing (using one thread) 2.85 mil-
lion nodes. To achieve this goal, it is necessary
to use aggressive cut generation, both at the root
node (including lift-and-project cuts) and during
branch and bound, and reduce the effort spent
in strong branching (cutstrategy = 3, covercuts = 5,
gomcuts= 10, lnpbest= 150, cutfreq= 1, treegomcuts= 4,
heurstrategy= 0, varselection= 3, and sbeffort= 0�1).
Problem arki001 has an optimal objective value of

7,580,813.046.

4.3. glass4
The problem glass4 is a nesting problem first studied
by Luzzi (2002). This particular instance is much eas-
ier for Xpress to solve if a cutoff value is used because
this allows reduced cost fixing to be performed and
allows all nodes with a bound greater than the cutoff
to be fathomed. We therefore used a two-stage pro-
cess to solve it in which the first stage was dedicated
to finding a good solution and the second stage was
dedicated to solving the problem with the cutoff value
from the first stage.
One of the reasons that it is hard to find very good

solutions for glass4 is that the objective function is
dominated by the cost coefficient of one variable that
at 1e+6 is much larger than all the other cost coef-
ficients which are one or two. This causes the tree
search to spend too much time searching for solu-
tions that are only slightly better than the last solu-
tion found. To avoid this, we set mipaddcutoff, which is
added to the value of any MIP solution that is found
to give the new cutoff value. As a result, any nodes
that have a bound that is not better by at least mipadd-
cutoff than the last solution found will be disregarded.
Because there is often a difference of around 1e+8
between solutions, we set mipaddcutoff to −9.98e+7.
We also increased the likelihood of finding solutions
by setting the backtrack strategy for the tree search
so that the search backtracks to the node with the
best estimated solution value (backtrack = 1) and by
setting the branching choice so that both child nodes
are solved when diving (branchchoice= 1). With these
settings, 14 solutions were found in 90 seconds on a
3 GHz Intel Core 2 Duo with the last one found being
a solution with value 1,200,012,600.
Using the cutoff value derived from the best-known

solution (1,200,012,600), Xpress 2006B proves that this
really is the optimal solution in nine minutes on a
3 GHz Intel Core 2 Duo, computing almost 500,000
nodes.
Problem glass4 has an optimal objective value of

1,200,012,600.
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4.4. roll3000
The problem roll3000 is a rolling stock problem first
studied by Kroon (2002).
Xpress 2006A belongs to the first group of solvers

that could solve this instance to optimality (see
Achterberg et al. 2006b, Vazacopoulos et al. 2006).
Special settings were used that modified the node
selection strategy to select the node with the best
bound (i.e., nodeselection = 2) and put more empha-
sis on cutting (in particular, in generating “extra”
Gomory cuts). Xpress 2006A needed about 2.8 mil-
lion nodes and 15.5 hours to provide this certificate
of optimality on a 3.0 GHz dual Xeon.
With further special settings, this time can be re-

duced to just 13 minutes. To do this, it is necessary
to increase the effort spent doing strong branching
and increase the generation of Gomory and lift-
and-project cuts at the top node and in the tree.
With the special settings (gomcuts= 20, lnpbest= 100,
lnpiterlimit = 50, cutfreq = 1, treecovercuts = 2,
treegomcuts = 2, heurstrategy = 3, sbeffort = 4), Xpress
2006B needs approximately 100,000 nodes to prove
optimality for this problem.
Ferris (2006) states that roll3000 was solved in about

50 hours of CPU time using GAMS Grid computing
in Condor. Achterberg (2006), using SCIP with aggres-
sive strong branching and moderate conflict analysis,
solved this problem in 10.3 hours by computing 4.1
million nodes using a computer based on a 3.2 GHz
Pentium 4.
Problem roll3000 has an optimal objective value of

12,890.

4.5. swath
The problem swath is a mission planning model for
synthetic aperture radar surveillance. The model opti-
mizes the tours for aircrafts and is similar to the trav-
elling salesman problem (TSP).
It is much easier to solve TSP problems if problem-

specific cuts are added. Ferris (2006) recently solved
swath after adding five rounds of subtour elimination
cuts, resulting in 32 extra constraints. The “enlarged”
problem was solved in less than 20 minutes using a
single machine with a standard MIP solver.
However, this problem can also be solved with-

out problem-specific cuts by using the same optimiza-
tion procedure that was used to solve problem a1c1s1
(see §4.1). Using both cores of an Intel Core Duo 2
computer, the elapsed time needed to solve the prob-
lem swath to optimality was about 66 hours.
The total number of subproblems created during

the application of our method was 516, of which 422
represent final subproblems. The time needed to cre-
ate these subproblems was 900 seconds, and the time
needed to solve them was approximately 234,000 sec-
onds of which 79,000 seconds correspond to the “final”

subproblems. The total number of nodes solved by our
procedure was about 60 million nodes.
In this case, we have again used several Xpress

controls to allow us to get better optimization per-
formance. We used a node selection rule that chooses
the node with the best bound from all outstanding
nodes (nodeselection = 2) and we put more effort on
Xpress cutting (namely, on lift-and-project cuts) and
on strong branching (cutstrategy = 3, covercuts = 50,
gomcuts= 20, cutfreq= 5, cutdepth= 50, treegomcuts= 0
and sbeffort= 5, and sbiterlimit= 100). We also used a
cutoff value of 468.
We note that after more than 36,000 hours of CPU

time, the GAMS Grid facility on the Condor system
(see Ferris 2006) was unable to prove optimality for
the original (i.e., unchanged) swath problem.
Problem swath has an optimal objective value of

467.407491 (Ferris 2006).

5. Problems That Have Been Solved
for the First Time

We now turn our attention to some of the harder
problems in MIPLIB 2003 that were unsolved prior to
September 2006.
Three MIP problems from MIPLIB 2003—atlanta-ip,

msc98-ip, and rd-rplusc-21—were solved for the first
time using Xpress 2006B by Vazacopoulos et al. (2006).
In this section, we describe the various algorithmic
approaches used in Vazacopoulos et al. (2006) to get
certificates of optimality for the previous problems. In
addition, the optimal objective values for two prob-
lems protfold and sp97ar are presented for the first time.
A summary of the results is displayed in Table 3,

which includes the computing times and the corre-
sponding optimal objectives.
The following subsections describe the individual

approaches that were used to solve these problems.

5.1. atlanta-ip
Problem atlanta-ip is a min-cost network problem with
side constraints. Although the integrality gap is quite
small, it is very difficult to close it completely.
An initial analysis of the model showed that it

contained a number constraints that appeared to be

Table 3 Objective Value and Computing Time Needed to Find the
Optimal Solutions of Four (Previously Unsolved) MIPLIB 2003
Problems Using Xpress-MP 2006B

Problem Computer system Solve time Optimal objective

atlanta-ip 3 GHz Intel Core 2 Duo 10 hours 90.00987861
msc98-ip 3 GHz Intel Core 2 Duo 1.5 hours 19�839�497�005874
sp97ar 3 GHz Intel Core 2 Duo >1 month 660�705�645�5
protfold Xeon 3.0 GHz, 2 CPU, 9 days −31

4 GB of RAM
rd-rplusc-21 Xeon 3.0 GHz, 2 CPU, 3.6 hours 165�395�2753

4 GB of RAM
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cuts and looked to be redundant at all MIP solutions.
Adding cuts to a model can sometimes make it much
harder to solve, so we dropped all the constraints we
suspected were cuts.
Next, we observed that the objective function had

a two-level structure. One set of binary variables has
integer costs greater than or equal to one and the
remaining binary variables have costs in the range
10−6 to 10−4. If we drop the smaller cost coefficients,
we create an easier problem because we can use the
fact that the greatest common denominator of the
remaining cost coefficients is one to improve the cut-
off and speed up the tree search. Solutions to the eas-
ier problem will be feasible for the original problem,
and because the sum of the smaller cost coefficients is
less than 0.5, we can use the optimal solution value to
the easier problem to add an objective cut involving
only those variables with the larger costs to the origi-
nal problem. In fact, the easier problem can be solved
to optimality in roughly four hours (on a 3 GHz Intel
Core 2 Duo computer) and 95,000 nodes. The contri-
bution to the objective function from the smaller cost
coefficients in the solution that we found was 0.012,
so the solution found in this way is within 0�012 of
the optimal solution to the original problem.
The final stage is to solve the original problem

(with cuts dropped) and with the objective cut added.
This took 4.5 hours and 66,000 nodes with the use
of heavy cutting in the tree and strong branching
(gomcuts= 0, cutfreq= 1, cutdepth= 20, treegomcuts= 0
and sbeffort= 5, and sbiterlimit = 500). Feeding the
final solution back into the original problem showed
that the constraints that we suspected were cuts were
indeed redundant at this solution.
Problem atlanta-ip has an optimal objective value of

90.0098786144 (Vazacopoulos et al. 2006).

5.2. msc98-ip
The problem msc98-ip is a min-cost network problem
similar to atlanta-ip (see §5.1) but arising from the
design of a nationwide communication network.
To find this optimal solution, we have taken the

same approach as the one used to solve problem
atlanta-ip. Problem msc98-ip is somewhat easier to
solve than atlanta-ip.
Xpress 2006B needs about eight minutes of comput-

ing time (on a 3 GHz Intel Core 2 Duo computer) for
the second stage, from which a near-optimal feasible
solution to the problem is found.
For the final stage, Xpress 2006B needs about

one hour of computing time on the same com-
puter, in which it computed almost 4,000 nodes using
(as before) heavy cutting in the tree and strong
branching.
Problem msc98-ip has an optimal objective value of

19,839,497.005874 (Vazacopoulos et al. 2006).

5.3. protfold
The problem protfold is a protein-folding model. The
degeneracy in the model makes it particularly diffi-
cult to solve to optimality, and although it is easy
to find poor-quality solutions, it becomes increasingly
difficult to find better-quality solutions.
Running the problem for a few hours showed that

the number of active tree nodes does not grow too
rapidly, so there seemed to be some hope in applying
a brute force approach to solving this problem. We left
parallel Xpress running (with an aggressive heuristic
strategy by setting heurstrategy= 3) and we were able
to prove optimality for protfold in about nine days of
(elapsed) computing time.
The computer used in this experiment was a 2 CPU

Xeon 3.0 GHz with 4 GB of RAM and running Win-
dows XP. The number of threads that we used for
parallel Xpress was four (by setting mipthreads = 4).
There was no particular reason for using this many
threads, but it was clear from our previous experience
on this problem that four threads would cooperate
well in increasing the lower bound faster than if the
more natural choice of two threads had been selected
instead.
The optimal solution was found by Xpress at node

133,930 of the search tree after almost eight hours of
computing time. At this particular node, the bound
was precisely −35. To close this gap completely,
Xpress computed nearly 2.4 million additional nodes.
Problem protfold has an optimal objective value

of −31.
5.4. rd-rplusc-21
The problem rd-rplusc-21 is a linearized relaxation
of a nonlinear model for a distillation column with
external reactor. The problem has a large number
of constraints compared with variables, and these
constraints are activated and deactivated by branch-
ing on the binary variables. The key to solving
this problem is to find good estimates for the vari-
able branching selection. Xpress 2006B can solve this
problem by turning off three standard procedures—
namely, by turning off cut generation (cutstrategy= 0),
heuristics (heurstrategy = 0), and strong branching
(sbiterlimit= 0). In addition, the solver has to pick
the most promising candidates for variable selection
using a method based on probing with dual esti-
mates (sbestimate = 3), and from the selected candi-
dates choose the candidate having the largest sum
of the pseudo-cost degradation in both branches
(varselection = 2). With these settings, Xpress 2006B
solves rd-rplusc-21 in 3.6 hours (using a dual Xeon
3.0 GHz), computing about 335,000 nodes. We finally
remark that the rd-rplusc-21 model contains 99 major
decision variables that appear in a GUB constraint,
and if we enumerate all 99 possibilities, the subprob-
lems that are created can all be solved in 14 minutes.
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Problem rd-rplusc-21 has an optimal objective value
of 165,395.2753 (Vazacopoulos et al. 2006).

5.5. sp97ar
The problem sp97ar is a railway line planning model
proposed by van Hoesel et al. (2001). When try-
ing to solve this problem, it soon becomes apparent
that a brute-force approach will not work. Even if
a tree search strategy that improves the best bound
is used, the rate at which the best bound increases
soon becomes extremely slow. The LP relaxation
bound is 6.5256e+8, and this bound can eventually be
increased to 6.578e+8, but increasing it above 6.6e+8
looks to be impossible.
The key to solving this problem is to use a tech-

nique that we call branch-and-bound fixing. For most
of the 14,101 binary variables, fixing the binary vari-
able to one increases the LP bound after cutting quite
substantially. In fact, several variables can be fixed
to zero as the bound increases above the value of
the best-known solution. Thus, the problem size can
be reduced by fixing each variable to one in turn
and performing a tree search for a limited number
of nodes using the best-known solution as a cutoff.
If this tree search completes without hitting the node
limit and without finding an integer solution, the vari-
able that had been fixed one is said to be branch-and-
bound fixed to zero. Several variables only require
a few nodes to be branch-and-bound fixed, but it
becomes increasingly difficult to fix variables in this
way and eventual tree searches of up to half a mil-
lion nodes are required. However, after over a month
of CPU time, around 90% of the variables can be
fixed to zero and the problem becomes small enough
to be solved. The solution of this final problem still
requires around 24 hours of CPU time with heavy use
of strong branching.
Problem sp97ar has an optimal objective value of

660,705,645.5.

6. First Feasible Solution of stp3d
The MIP stp3d is possibly the hardest problem in
MIPLIB 2003. The problem is a Steiner tree problem
for which the LP relaxation and some of the tree
node reoptimizations can be difficult. The first feasible
solution of problem stp3d has been found by Xpress
using a maximum degradation strategy (i.e., by set-
ting varselection= 4). This solution was found in about
five hours using Xpress 2006B specially designed
to apply fast node reoptimizations. The first known
solution of problem stp3d has an objective value of
529.778190.
Using the next generation of local search heuris-

tics of Xpress, the first solution of stp3d was quickly
improved to a solution with objective value of 500.736

Table 4 Improved Objective Values of the MIPLIB 2003 Unsolved
Problems

Old best-known Xpress improved Gain
Problem obj. value �z��	 obj. value �z�	 �1− �z�	/�z��	� (%)

stp3d Unknown 500�736 n/a
ds 283�4425 116�59 58�9
momentum3 370�177�036 236�426�335 36�1
t1717 193�221 170�195 11�9
liu 1�172 1�102 6�0
dano3mip 691�2 687.733333 0�5

(see §7). Note that this solution defines a 3.3% rela-
tive gap.
So far, the best-known solution for stp3d is 500.736.

7. Reducing the Gap of All
Open Problems

Using the next generation of Xpress heuristics, based
on local search procedures built on top of Xpress
2006B, improved solutions were found for all of
the remaining (seven) open problems from MIPLIB
2003. Table 4 provides these improvements along
with the previously best-known objectives, to our best
knowledge.
The best-known objectives of the open problems

were mostly taken from the discussion list of the
MIPLIB 2003 website (Achterberg et al. 2006b). Sev-
eral recent papers (Achterberg and Berthold 2005;
Balas and Saxena 2005, 2008; Fischetti and Lodi 2003;
Hansen et al. 2006) referencing MIPLIB 2003 were also
considered to define the best objectives.
From Table 4, it can be seen that the new

local search heuristics were capable of consider-
ably improving the best-known solutions. The most
notable achievement occurred with the ds problem,
which consists of a 58.9% gain over the old best-
known solution.
Each one of these solutions was found in a few

hours on a standard computer on an average case.
The precise solution times are not available because
the improved solutions were found in an incremen-
tal way, and because the parameters would usually
be different when applied between two consecutive
rounds of heuristics.
Table 5 lists the remaining unsolved problems in

MIPLIB 2003 and for each instance presents the best
upper bound (i.e., objective) and lower bound to the
optimum.
It can be seen that instances momentum3, liu, and

ds have the largest relative gaps, having, respectively,
gaps of 149.3%, 85.6%, and 52.8%. These problems
still offer a challenge for Xpress, and it seems unlikely
that they will be solved without making use of infor-
mation associated with the problem logic or further
breakthroughs in MIP technology.
At the other end, instance stp3d has a relatively

small gap (3.3%), but the rate at which the gap can be
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Table 5 Best-Known Lower and Upper Bounds of the MIPLIB 2003
Unsolved Problems

Lower bound Upper bound Gap
Problem �z+	 �z�	 �1− z�/z+� (%)

stp3d 484�71817 500�736 3�3
dano3mip 578�05603 687.733333 19�0
t1717 136�538�4219 170�195 24�6
ds 76.32504272 116�5 52�8
liu 613 1�102 79�8
momentum3 94�824�16406 236,426.335 149�3

closed by branching or cutting is relatively slow so it
may be a while before this problem is solved.

8. Conclusions
In this paper, we have shown that it is possible to
solve some of the hardest problems in MIPLIB 2003
using current technology. In particular, the solution
methodology and technology considered led us to
achieve the following results: (i) five MIP problems
(atlanta-ip, msc98-ip, protfold, rd-rplusc-21, and sp97ar)
were solved for the first time; (ii) one MIP problem
(a1c1s1) was solved for the first time using a single
computer; (iii) the first feasible solution for the stp3d
problem was found; and (iv) improved solutions were
found for the remaining open problems from MIPLIB
2003.
Although there have been great advances in MIP

technology, tuning and modeling still play an impor-
tant role when solving hard optimization problems.
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borhood search and local branching. Comput. Oper. Res. 33
3034–3045.

Hoffman, K. L., M. Padberg. 1991. Improving LP-representations
of zero-one linear programs for branch-and-cut. ORSA J. Com-
put. 3 121–134.

Kroon, L. 2002. Personal communication.
Laundy, R. 1999. Implementation of parallel branch-and-bound

algorithms in Xpress-MP. T. Ciriani, S. Gliozzi, E. Johnson,
R. Tadei, eds. Operational Research in Industry. Palgrave Macmil-
lan, Basingstoke, Hampshire, UK, 25–41.

Luzzi, I. 2002. Exact and heuristic methods for nesting problems.
Ph.D. thesis, University of Padova, Padova, Italy.

Padberg, M. W., T. J. Van Roy, L. A. Wolsey. 1985. Valid inequalities
for fixed charge problems. Oper. Res. 33 842–861.

Perregaard, M. 2003. A practical implementation of lift-and-project
cuts: A computational exploration of lift-and-project cuts
with Xpress-MP. Presentation, 18th International Symposium
on Mathematical Programming (ISMP 2003) (Copenhagen),
August 18–22, Mathematical Programming Society, Phildel-
phia, http://www.dashoptimization.com/home/downloads/
pdf/ismp2003_MP.pdf.

Savelsbergh, M. W. P. 1994. Preprocessing and probing for mixed
integer programming problems. ORSA J. Comput. 6 445–454.

van Hoesel, S., J. W. Goessens, L. Kroon. 2001. A branch-and-cut
approach to line planning problems. Working paper, Erasmus
University Rotterdam, Rotterdam, The Netherlands.

Van Roy, T. J., L. A. Wolsey. 1987. Solving mixed integer program-
ming problems using automatic reformulation. Oper. Res. 35
45–57.

Van Vyve, M., Y. Pochet. 2001. A general heuristic for produc-
tion planning problems. CORE Discussion Paper 56, Center for
Operations Research and Econometrics, Université catholique
de Louvain, Louvain-la-Neuve, Belgium.

Vazacopoulos, A. 2006a. State-of-the-art optimimation using
Xpress-MP 2006A. Preconference workshop presentation,
INFORMS Practice Meeting (Miami), April 30, INFORMS,
Hanover, MD, http://www.dashoptimization.com/home/
downloads/pdf/Informs_Practice_2006_workshop.pdf.

Vazacopoulos, A., R. Laundy, G. Tavares. 2006b. State-of-the-optimi-
zation using Xpress-MP v2006. Presentation, INFORMS Annual
Meeting (Pittsburgh), November 6, INFORMS, Hanover, MD,
http://miplib.zip.de/paper/vazacopoulos2006.pdf.

Wolsey, L. 1998. Integer Programming. John Wiley & Sons, New York.


